Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 855
Filtrar
1.
Lipids Health Dis ; 23(1): 112, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641607

RESUMO

It is hypothesized that COVID-19, post-COVID and post-mRNA COVID-19 (and other related) vaccine manifestations including "long haul syndrome" are due to deficiency of essential fatty acids (EFAs) and dysregulation of their metabolism. This proposal is based on the observation that EFAs and their metabolites can modulate the swift immunostimulatory response of SARS-CoV-2 and similar enveloped viruses, suppress inappropriate cytokine release, possess cytoprotective action, modulate serotonin and bradykinin production and other neurotransmitters, inhibit NF-kB activation, regulate cGAS-STING pathway, modulate gut microbiota, inhibit platelet activation, regulate macrophage and leukocyte function, enhance wound healing and facilitate tissue regeneration and restore homeostasis. This implies that administration of EFAs could be of benefit in the prevention and management of COVID-19 and its associated complications.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Ácidos Graxos Essenciais/metabolismo , Síndrome , Inflamação/metabolismo
2.
Infect Immun ; : e0052223, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629842

RESUMO

Streptococcus pneumoniae (pneumococcus) remains a serious cause of pulmonary and systemic infections globally, and host-directed therapies are lacking. The aim of this study was to test the therapeutic efficacy of asapiprant, an inhibitor of prostaglandin D2 signaling, against pneumococcal infection. Treatment of young mice with asapiprant after pulmonary infection with invasive pneumococci significantly reduced systemic spread, disease severity, and host death. Protection was specific against bacterial dissemination from the lung to the blood but had no effect on pulmonary bacterial burden. Asapiprant-treated mice had enhanced antimicrobial activity in circulating neutrophils, elevated levels of reactive oxygen species (ROS) in lung macrophages/monocytes, and improved pulmonary barrier integrity indicated by significantly reduced diffusion of fluorescein isothiocyanate (FITC)-dextran from lungs into the circulation. These findings suggest that asapiprant protects the host against pneumococcal dissemination by enhancing the antimicrobial activity of immune cells and maintaining epithelial/endothelial barrier integrity in the lungs.

3.
J Nutr ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582385

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) controls the biophysical organization of plasma membrane sphingolipid/cholesterol-enriched lipid rafts to exert anti-inflammatory effects, particularly in lymphocytes. However, the impact of DHA on the spatial arrangement of alveolar macrophage lipid rafts and inflammation is unknown. OBJECTIVES: The primary objective was to determine how DHA controls lipid raft organization and function of alveolar macrophages. As proof-of-concept, we also investigated DHA's anti-inflammatory effects on select pulmonary inflammatory markers with a murine influenza model. METHODS: MH-S cells, an alveolar macrophage line, were treated with 50 µM DHA or vehicle control and were used to study plasma membrane molecular organization with fluorescence-based methods. Biomimetic membranes and coarse grain molecular dynamic (MD) simulations were employed to investigate how DHA mechanistically controls lipid raft size. qRT-PCR, mass spectrometry, and ELISAs were used to quantify downstream inflammatory signaling transcripts, oxylipins, and cytokines, respectively. Lungs from DHA-fed influenza-infected mice were analyzed for specific inflammatory markers. RESULTS: DHA increased the size of lipid rafts while decreasing the molecular packing of the MH-S plasma membrane. Adding a DHA-containing phospholipid to a biomimetic lipid raft-containing membrane led to condensing, which was reversed with the removal of cholesterol. MD simulations revealed DHA nucleated lipid rafts by driving cholesterol and sphingomyelin into rafts. Downstream of the plasma membrane, DHA lowered the concentration of select inflammatory transcripts, oxylipins, and IL-6 secretion. DHA lowered pulmonary Il6 and Tnf-α mRNA expression and increased anti-inflammatory oxylipins of influenza-infected mice. CONCLUSIONS: The data suggest a model in which the localization of DHA acyl chains to nonrafts is driving sphingomyelin and cholesterol molecules into larger lipid rafts, which may serve as a trigger to impede signaling and lower inflammation. These findings also identify alveolar macrophages as a target of DHA and underscore the anti-inflammatory properties of DHA for lung inflammation.

4.
Sci Total Environ ; 928: 172295, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38588744

RESUMO

BACKGROUND/AIM: Heavy metals are known to induce oxidative stress and inflammation, and the association between metal exposure and adverse birth outcomes is well established. However, there lacks research on biomarker profiles linking metal exposures and adverse birth outcomes. Eicosanoids are lipid molecules that regulate inflammation in the body, and there is growing evidence that suggests associations between plasma eicosanoids and pregnancy outcomes. Eicosanoids may aid our understanding of etiologic birth pathways. Here, we assessed associations between maternal blood metal concentrations with eicosanoid profiles among 654 pregnant women in the Puerto Rico PROTECT birth cohort. METHODS: We measured concentrations of 11 metals in whole blood collected at median 18 and 26 weeks of pregnancy, and eicosanoid profiles measured in plasma collected at median 26 weeks. Multivariable linear models were used to regress eicosanoids on metals concentrations. Effect modification by infant sex was explored using interaction terms. RESULTS: A total of 55 eicosanoids were profiled. Notably, 12-oxoeicosatetraenoic acid (12-oxoETE) and 15-oxoeicosatetraenoic acid (15-oxoETE), both of which exert inflammatory activities, had the greatest number of significant associations with metal concentrations. These eicosanoids were associated with increased concentrations of Cu, Mn, and Zn, and decreased concentrations of Cd, Co, Ni, and Pb, with the strongest effect sizes observed for 12-oxoETE and Pb (ß:-33.5,95 %CI:-42.9,-22.6) and 15-oxoETE and Sn (ß:43.2,95 %CI:11.4,84.1). Also, we observed differences in metals-eicosanoid associations by infant sex. Particularly, Cs and Mn had the most infant sex-specific significant associations with eicosanoids, which were primarily driven by female fetuses. All significant sex-specific associations with Cs were inverse among females, while significant sex-specific associations with Mn among females were positive within the cyclooxygenase group but inverse among the lipoxygenase group. CONCLUSION: Certain metals were significantly associated with eicosanoids that are responsible for regulating inflammatory responses. Eicosanoid-metal associations may suggest a role for eicosanoids in mediating metal-induced adverse birth outcomes.

5.
Nefrologia (Engl Ed) ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38448299

RESUMO

BACKGROUND: There are evidence indicating that some metabolites of arachidonic acid produced by cytochromes P450 (CYP) and epoxide hydroxylase (EPHX2), such as hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs) or dihydroxyeicosatrienoic acids (DHETEs), play an important role in blood pressure regulation and they could contribute to the development of hypertension (HT) and kidney damage. Therefore, the main aim of the study was to evaluate whether the genetic polymorphisms of CYP2C8, CYP2C9, CYP2J2, CYP4F2, CYP4F11 and EPHX2, responsible for the formation of HETEs, EETs and DHETEs, are related to the progression of impaired renal function in a group of patients with hypertension. METHODS: 151HT patients from a hospital nephrology service were included in the study. Additionally, a group of 87 normotensive subjects were involved in the study as control group. For HT patients, a general biochemistry analysis, estimated glomerular filtration rate and genotyping for different CYPs and EPHX2 variant alleles was performed. RESULTS: CYP4A11 rs3890011, rs9332982 and EPHX2 rs41507953 polymorphisms, according to the dominant model, presented a high risk of impaired kidney function, with odds ratios (OR) of 2.07 (1.00-4.32; P=0.049) 3.02 (1.11-8.23; P=0.030) and 3.59 (1.37-9.41; P=0.009), respectively, and the EPHX2 rs1042032 polymorphism a greater risk according to the recessive model (OR=6.23; 95% CI=1.50-25.95; P=0.007). However, no significant differences in allele frequencies between HT patients and in normotensive subjects for any of the SNP analysed. In addition, the patients with diagnosis of dyslipidemia (n=90) presented higher frequencies of EPHX2 K55R (rs41507953) and *35A>G (rs1042032) variants than patients without dyslipidemia, 4% vs. 14% (P=0.005) and 16 vs. 27% (P=0.02), respectively. CONCLUSIONS: In this study has been found higher odds of impaired renal function progression associated with rs3890011 and rs9332982 (CYP4A11) and rs41507953 and rs1042032 (EPHX2) polymorphisms, which may serve as biomarkers for improve clinical interventions aimed at avoiding or delaying, in chronic kidney disease patients, progress to end-stage kidney disease needing dialysis or kidney transplant.

6.
Biomolecules ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540794

RESUMO

Polyunsaturated fatty acids (PUFAs) generate pro- and anti-inflammatory eicosanoids via three different metabolic pathways. This study profiled tear PUFAs and their metabolites and examined the relationships with dry eye (DE) and meibomian gland dysfunction (MGD) symptoms and signs. A total of 40 individuals with normal eyelids and corneal anatomies were prospectively recruited. The symptoms and signs of DE and MGD were assessed, and tear samples (from the right eye) were analyzed by mass spectrometry. Mann-Whitney U tests assessed differences between medians; Spearman tests assessed correlations between continuous variables; and linear regression models assessed the impact of potential confounders. The median age was 63 years; 95% were male; 30% were White; and 85% were non-Hispanic. The symptoms of DE/MGD were not correlated with tear PUFAs and eicosanoids. DE signs (i.e., tear break-up time (TBUT) and Schirmer's) negatively correlated with anti-inflammatory eicosanoids (11,12-dihydroxyeicosatrienoic acid (11,12 DHET) and 14,15-dihydroxyicosatrienoic acid (14,15, DHET)). Corneal staining positively correlated with the anti-inflammatory PUFA, docosahexaenoic acid (DHA). MGD signs significantly associated with the pro-inflammatory eicosanoid 15-hydroxyeicosatetranoic acid (15-HETE) and DHA. Several relationships remained significant when potential confounders were considered. DE/MGD signs relate more to tear PUFAs and eicosanoids than symptoms. Understanding the impact of PUFA-related metabolic pathways in DE/MGD may provide targets for new therapeutic interventions.


Assuntos
Síndromes do Olho Seco , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Síndromes do Olho Seco/tratamento farmacológico , Eicosanoides/metabolismo , Lágrimas/metabolismo , Córnea/metabolismo , Ácidos Docosa-Hexaenoicos , Anti-Inflamatórios/uso terapêutico
7.
Microorganisms ; 12(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543619

RESUMO

This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.

8.
Viruses ; 16(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543727

RESUMO

The role of Influenza D virus (IDV) in bovine respiratory disease remains unclear. An in vivo experiment resulted in increased clinical signs, lesions, and pathogen replication in calves co-infected with IDV and Mycoplasma bovis (M. bovis), compared to single-infected calves. The present study aimed to elucidate the host-pathogen interactions and profile the kinetics of lipid mediators in the airways of these calves. Bronchoalveolar lavage (BAL) samples collected at 2 days post-infection (dpi) were used for proteomic analyses by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, lipidomic analyses were performed by LC-MS/MS on BAL samples collected at 2, 7 and 14 dpi. Whereas M. bovis induced the expression of proteins involved in fibrin formation, IDV co-infection counteracted this coagulation mechanism and downregulated other acute-phase response proteins, such as complement component 4 (C4) and plasminogen (PLG). The reduced inflammatory response against M. bovis likely resulted in increased M. bovis replication and delayed M. bovis clearance, which led to a significantly increased abundance of oxylipids in co-infected calves. The identified induced oxylipids mainly derived from arachidonic acid; were likely oxidized by COX-1, COX-2, and LOX-5; and peaked at 7 dpi. This paper presents the first characterization of BAL proteome and lipid mediator kinetics in response to IDV and M. bovis infection in cattle and raises hypotheses regarding how IDV acts as a co-pathogen in bovine respiratory disease.


Assuntos
Doenças dos Bovinos , Mycoplasma bovis , Infecções Respiratórias , Animais , Bovinos , 60548 , Cromatografia Líquida , Lipidômica , Proteômica , Espectrometria de Massas em Tandem , Interações Hospedeiro-Patógeno , Lipídeos
9.
Curr Protoc ; 4(3): e992, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38439570

RESUMO

Oxylipins are oxidized metabolites of polyunsaturated fatty acids (PUFAs). They represent a class of risk markers and/or therapeutic targets for diseases associated with inflammation, including cardiovascular disease and brain disorders. Because the biological activities of free PUFAs and oxylipins depend on their chemical structures and concentrations, monitoring PUFAs and oxylipin levels in biological systems is critical for understanding their roles in health and disease. Traditionally, accurate quantification of free PUFAs and oxylipins in biological samples was performed separately, as PUFAs are often 1000-fold more abundant than the derived oxidized fatty acids (oxylipins). This article describes a liquid chromatography multiple reaction monitoring tandem mass spectrometry method for the quantitative analysis of five free PUFAs and 88 oxylipins in various biological fluids, including plasma, platelet supernatants, and tissues. The same approach can also be used in conjunction with an alkaline hydrolysis step to quantify total oxylipins in fish oils. We observed that in some samples, linoleic acid levels in plasma and eicosapentaenoic acid and arachidonic acid levels in brain tissue were above the upper limit of quantification. To address this issue, we developed a data analysis method to obtain PUFA and oxylipin concentrations in these samples without additional sample preparation, thus significantly saving time and labor. © 2024 Wiley Periodicals LLC. Basic Protocol: Quantification of polyunsaturated fatty acids (PUFAs) and oxylipins using liquid chromatography multiple reaction monitoring tandem mass spectrometry Support Protocol 1: Preparation of internal standard mixed working solution Support Protocol 2: Preparation of standard mixed stock solution Support Protocol 3: Preparation of standard mixed working solution Alternate Protocol 1: Extraction and quantitation of free PUFAs and oxylipins from mouse brain tissue Alternate Protocol 2: Extraction and quantitation of total PUFAs and oxylipins from fish oil.


Assuntos
Ácidos Graxos , Oxilipinas , Animais , Camundongos , Estresse Oxidativo , Ácidos Graxos não Esterificados , Ácido Linoleico , Óleos de Peixe
10.
Cell Commun Signal ; 22(1): 189, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519981

RESUMO

The proinflammatory cytokines and arachidonic acid (AA)-derived eicosanoids play a key role in cartilage degeneration in osteoarthritis (OA). The lysophosphatidylcholine acyltransferase 3 (LPCAT3) preferentially incorporates AA into the membranes. Our recent studies showed that MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) plays a crucial role in propagating inflammatory signaling triggered by IL-1ß and other inflammatory mediators in endothelial cells. The present study shows that LPCAT3 expression was up-regulated in both human and mice articular cartilage of OA, and correlated with severity of OA. The IL-1ß-induces cell death via upregulation of LPCAT3, MMP3, ADAMTS5, and eicosanoids via MALT1. Gene silencing or pharmacological inhibition of LPCAT3 or MALT1 in chondrocytes and human cartilage explants notably suppressed the IL-1ß-induced cartilage catabolism through inhibition of expression of MMP3, ADAMTS5, and also secretion of cytokines and eicosanoids. Mechanistically, overexpression of MALT1 in chondrocytes significantly upregulated the expression of LPCAT3 along with MMP3 and ADAMTS5 via c-Myc. Inhibition of c-Myc suppressed the IL-1ß-MALT1-dependent upregulation of LPCAT3, MMP3 and ADAMTS5. Consistent with the in vitro data, pharmacological inhibition of MALT1 or gene silencing of LPCAT3 using siRNA-lipid nanoparticles suppressed the synovial articular cartilage erosion, pro-inflammatory cytokines, and eicosanoids such as PGE2, LTB4, and attenuated osteoarthritis induced by the destabilization of the medial meniscus in mice. Overall, our data reveal a previously unrecognized role of the MALT1-LPCAT3 axis in osteoarthritis. Targeting the MALT1-LPCAT3 pathway with MALT1 inhibitors or siRNA-liposomes of LPCAT3 may become an effective strategy to treat OA by suppressing eicosanoids, matrix-degrading enzymes, and proinflammatory cytokines.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Humanos , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/metabolismo , Citocinas/metabolismo , Eicosanoides/metabolismo , Eicosanoides/farmacologia , Eicosanoides/uso terapêutico , Células Endoteliais/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/farmacologia , Metaloproteinase 3 da Matriz/uso terapêutico , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Osteoartrite/metabolismo , RNA Interferente Pequeno/metabolismo
11.
J Clin Invest ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483511

RESUMO

In lung, thromboxane A2 (TXA2) activates the TP receptor to induce pro-inflammatory and bronchoconstrictor effects. Thus, TP receptor antagonists and TXA2 synthase inhibitors have been tested as potential asthma therapeutics in humans. Th9 cells play key roles in asthma and regulate the lung immune response to allergens. Herein, we found that TXA2 reduces Th9 cell differentiation during allergic lung inflammation. Th9 cells were decreased ~2-fold and airway hyperresponsiveness was attenuated in lungs of allergic mice treated with TXA2. Naïve CD4+ T cell differentiation to Th9 cells and IL-9 production was inhibited dose-dependently by TXA2 in vitro. TP receptor deficient mice had a ~2-fold increase in numbers of Th9 cells in lungs in vivo after OVA exposure compared to wild type (WT) mice. Naïve CD4+ T cells from TP deficient mice exhibited increased Th9 cell differentiation and IL-9 production in vitro compared to CD4+ T cells from WT mice. TXA2 also suppressed Th2 and enhanced Treg differentiation both in vitro and in vivo. Thus, in contrast to its acute, pro-inflammatory effects, TXA2 also has longer-lasting immunosuppressive effects that attenuate the Th9 differentiation that drives asthma progression. These findings may explain the paradoxical failure of anti-thromboxane therapies in the treatment of asthma.

12.
J Neurochem ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317494

RESUMO

Hormone-sensitive lipase (HSL) is active throughout the brain and its genetic ablation impacts brain function. Its activity in the brain was proposed to regulate bioactive lipid availability, namely eicosanoids that are inflammatory mediators and regulate cerebral blood flow (CBF). We aimed at testing whether HSL deletion increases susceptibility to neuroinflammation and impaired brain perfusion upon diet-induced obesity. HSL-/-, HSL+/-, and HSL+/+ mice of either sex were fed high-fat diet (HFD) or control diet for 8 weeks, and then assessed in behavior tests (object recognition, open field, and elevated plus maze), metabolic tests (insulin and glucose tolerance tests and indirect calorimetry in metabolic cages), and CBF determination by arterial spin labeling (ASL) magnetic resonance imaging (MRI). Immunofluorescence microscopy was used to determine coverage of blood vessels, and morphology of astrocytes and microglia in brain slices. HSL deletion reduced CBF, most prominently in cortex and hippocampus, while HFD feeding only lowered CBF in the hippocampus of wild-type mice. CBF was positively correlated with lectin-stained vessel density. HSL deletion did not exacerbate HFD-induced microgliosis in the hippocampus and hypothalamus. HSL-/- mice showed preserved memory performance when compared to wild-type mice, and HSL deletion did not significantly aggravate HFD-induced memory impairment in object recognition tests. In contrast, HSL deletion conferred protection against HFD-induced obesity, glucose intolerance, and insulin resistance. Altogether, this study points to distinct roles of HSL in periphery and brain during diet-induced obesity. While HSL-/- mice were protected against metabolic syndrome development, HSL deletion reduced brain perfusion without leading to aggravated HFD-induced neuroinflammation and memory dysfunction.

13.
Toxicol Appl Pharmacol ; 484: 116856, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336253

RESUMO

High-fat diet (HFD) contributes to neuroinflammation forming, hence it is crucial to find safe and effective substances that are able to counteract its progress. The anti-inflammatory properties of phytocannabinoids acquired from the Cannabis plant have been widely acknowledged. We evaluated the effects of cannabidiol (CBD) treatment on induced by applying HFD early stages of neuroinflammation in Wistar rat cerebral cortex. In our 7-week experiment, CBD was injected intraperitoneally over the last 14days at a dose of 10 mg/kg of body weight once a day. The level of arachidonic acid, a precursor to pro-inflammatory eicosanoids, decreased in all analysed lipid classes after CBD administration to the HFD group. Moreover, the extent of diminishing the activity of the omega-6 (n-6) fatty acid pathway by CBD was the greatest in diacylglycerols and phospholipids. Surprisingly, CBD was also capable of downregulating the activity of the omega-3 (n-3) pathway. The expression of enzymes involved in the synthesis of the eicosanoids was significantly increased in the HFD group and subsequently lowered by CBD. Significant changes in various cytokines levels were also discovered. Our results strongly suggest the ability of CBD to reduce the formation of lipid inflammation precursors in rat cerebral cortex, as a primary event in the development of neurodegenerative diseases. This can raise hopes for the future use of this cannabinoid for therapeutic purposes since it is a substance lacking lasting and severe side effects.


Assuntos
Canabidiol , Ratos , Animais , Canabidiol/farmacologia , Doenças Neuroinflamatórias , Ratos Wistar , Dieta Hiperlipídica/efeitos adversos , Fosfolipídeos , Córtex Cerebral , Eicosanoides
14.
J Nutr Biochem ; 126: 109580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38272323

RESUMO

Breastfeeding is the gold standard in infant nutrition and continuous researches aim to optimize infant formula composition as the best alternative available. Human milk lipid content provides more than 50% of energy requirements for infants together with essential vitamins, polyunsaturated fatty acids, and other bioactive components. While fatty acids and vitamins human milk content has been extensively studied and, when needed those have been added to infant formulas, less is known about polyunsaturated fatty acids functional derivatives and other bioactive components. Here we describe the comparison of lipid compositions in breast milk from 22 healthy volunteers breastfeeding mothers and the six most common infant formula devoting particular attention to two families of signaling lipids, endocannabinoids, and eicosanoids. The main differences between breast milk and formulas lie in a variety of saturated fatty and unsaturated fatty acids, in the total amount (45-95% less in infant formula) and a variety of endocannabinoids and eicosanoids (2-AG, 5(s)HETE, 15(S)-HETE and 14,15-EET).


Assuntos
Fórmulas Infantis , Leite Humano , Lactente , Feminino , Humanos , Leite Humano/química , Fórmulas Infantis/química , Endocanabinoides , Lipídeos/química , Ácidos Graxos/análise , Ácidos Graxos Insaturados , Vitaminas , Eicosanoides , Ácidos Hidroxieicosatetraenoicos/análise
15.
Cell Rep ; 43(2): 113700, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38265935

RESUMO

Elevated interleukin (IL)-1ß levels, NLRP3 inflammasome activity, and systemic inflammation are hallmarks of chronic metabolic inflammatory syndromes, but the mechanistic basis for this is unclear. Here, we show that levels of plasma IL-1ß are lower in fasting compared to fed subjects, while the lipid arachidonic acid (AA) is elevated. Lipid profiling of NLRP3-stimulated mouse macrophages shows enhanced AA production and an NLRP3-dependent eicosanoid signature. Inhibition of cyclooxygenase by nonsteroidal anti-inflammatory drugs decreases eicosanoid, but not AA, production. It also reduces both IL-1ß and IL-18 production in response to NLRP3 activation. AA inhibits NLRP3 inflammasome activity in human and mouse macrophages. Mechanistically, AA inhibits phospholipase C activity to reduce JNK1 stimulation and hence NLRP3 activity. These data show that AA is an important physiological regulator of the NLRP3 inflammasome and explains why fasting reduces systemic inflammation and also suggests a mechanism to explain how nonsteroidal anti-inflammatory drugs work.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Araquidônico/uso terapêutico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Eicosanoides , Jejum
16.
J Hepatol ; 80(1): 140-154, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37741346

RESUMO

Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.


Assuntos
Carcinoma Hepatocelular , Hepatopatias Alcoólicas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatias Alcoólicas/metabolismo , Carcinoma Hepatocelular/patologia , Fosfolipídeos/metabolismo , Neoplasias Hepáticas/patologia , Fígado/patologia
18.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958498

RESUMO

Bioactive lipids are involved in cellular signalling events with links to human disease. Many of these are involved in inflammation under normal and pathological conditions. Despite being attractive molecules from a pharmacological point of view, the detection and quantification of lipids has been a major challenge. Here, we have optimised a liquid chromatography-dynamic multiple reaction monitoring-targeted mass spectrometry (LC-dMRM-MS) approach to profile eicosanoids and fatty acids in biological samples. In particular, by applying this analytic workflow to study a cellular model of chronic myeloid leukaemia (CML), we found that the levels of intra- and extracellular 2-Arachidonoylglycerol (2-AG), intracellular Arachidonic Acid (AA), extracellular Prostaglandin F2α (PGF2α), extracellular 5-Hydroxyeicosatetraenoic acid (5-HETE), extracellular Palmitic acid (PA, C16:0) and extracellular Stearic acid (SA, C18:0), were altered in response to immunomodulation by type I interferon (IFN-I), a currently approved treatment for CML. Our observations indicate changes in eicosanoid and fatty acid metabolism, with potential relevance in the context of cancer inflammation and CML.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Ácidos Graxos , Interferons , Espectrometria de Massas em Tandem/métodos , Eicosanoides/metabolismo , Inflamação
19.
medRxiv ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37961525

RESUMO

Background: Per- and poly-fluoroalkyl substances (PFAS) exposure can occur through ingestion of contaminated food and water, and inhalation of indoor air contaminated with these chemicals from consumer and industrial products. Prenatal PFAS exposures may confer risk for pregnancy-related outcomes such as hypertensive and metabolic disorders, preterm birth, and impaired fetal development through intermediate metabolic and inflammation pathways. Objective: Estimate associations between maternal pregnancy PFAS exposure (individually and as a mixture) and bioactive lipids. Methods: Our study included pregnant women in the Environmental influences on Child Health Outcomes Program: Chemicals in our Bodies cohort (CiOB, n=73), Illinois Kids Developmental Study (IKIDS, n=287), and the ECHO-PROTECT cohort (n=54). We measured twelve PFAS in serum and 50 plasma bioactive lipids (parent fatty acids and eicosanoids derived from cytochrome p450, lipoxygenase, and cyclooxygenase) during pregnancy (median 17 gestational weeks). Pairwise associations across cohorts were estimated using linear mixed models and meta-analysis. Associations between the PFAS mixture and individual bioactive lipids were estimated using quantile g-computation. Results: PFDeA, PFOA, and PFUdA were associated (p<0.05) with changes in bioactive lipid levels in all three enzymatic pathways (cyclooxygenase [n=6 signatures]; cytochrome p450 [n=5 signatures]; lipoxygenase [n=7 signatures]) in at least one combined cohort analysis. The strongest signature indicated that a doubling in PFOA corresponded with a 24.3% increase (95% CI [7.3%, 43.9%]) in PGD2 (cyclooxygenase pathway) in the combined cohort. In the mixtures analysis, we observed nine positive signals across all pathways associated with the PFAS mixture. The strongest signature indicated that a quartile increase in the PFAS mixture was associated with a 34% increase in PGD2 (95% CI [8%, 66%]), with PFOS contributing most to the increase. Conclusions: Bioactive lipids were revealed as biomarkers of PFAS exposure and could provide mechanistic insights into PFAS' influence on pregnancy outcomes, informing more precise risk estimation and prevention strategies.

20.
FASEB J ; 37(12): e23330, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37983658

RESUMO

Long-chain acyl-CoA synthetase 4 (ACSL4) converts free highly unsaturated fatty acids (HUFAs) into their acyl-CoA esters and is important for HUFA utilization. HUFA-containing phospholipids produced via ACSL4-dependent reactions are involved in pathophysiological events such as inflammatory responses and ferroptosis as a source for lipid mediators and/or a target of oxidative stress, respectively. However, the in vivo role of ACSL4 in inflammatory responses is not fully understood. This study sought to define the effects of ACSL4 deficiency on lipopolysaccharide (LPS)-induced systemic inflammatory responses using global Acsl4 knockout (Acsl4 KO) mice. Intraperitoneal injection of LPS-induced more severe symptoms, including diarrhea, hypothermia, and higher mortality, in Acsl4 KO mice within 24 h compared with symptoms in wild-type (WT) mice. Intestinal permeability induced 3 h after LPS challenge was also enhanced in Acsl4 KO mice compared with that in WT mice. In addition, plasma levels of some eicosanoids in Acsl4 KO mice 6 h post-LPS injection were 2- to 9-fold higher than those in WT mice. The increased mortality observed in LPS-treated Acsl4 KO mice was significantly improved by treatment with the general cyclooxygenase inhibitor indomethacin with a partial reduction in the severity of illness index for hypothermia, diarrhea score, and intestinal permeability. These results suggest that ACSL4 deficiency enhances susceptibility to endotoxin at least partly through the overproduction of cyclooxygenase-derived eicosanoids.


Assuntos
Hipotermia , Choque Séptico , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Choque Séptico/induzido quimicamente , Eicosanoides , Diarreia , Ligases , Coenzima A Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...